Part Number Hot Search : 
SLH34 L24021IR 0022122 M48T12 PST994D AD7225LP IC149 E39CA
Product Description
Full Text Search
 

To Download IRG4RC10KDPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD - 95035
IRG4RC10KDPBF
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
* Short Circuit Rated UltraFast: Optimized for high operating frequencies >5.0 kHz , and Short Circuit Rated to 10s @ 125C, VGE = 15V * Generation 4 IGBT design provides tighter parameter distribution and higher efficiency than previous generation * IGBT co-packaged with HEXFREDTM ultrafast, ultra-soft-recovery anti-parallel diodes for use in bridge configurations * Industry standard TO-252AA package * Lead-Free
Short Circuit Rated UltraFast IGBT
C
Features
VCES = 600V
G E
VCE(on) typ. = 2.39V
@VGE = 15V, IC = 5.0A
n-channel
Benefits
Absolute Maximum Ratings
VCES IC @ TC = 25C IC @ TC = 100C ICM ILM IF @ TC = 100C IFM tsc VGE PD @ TC = 25C PD @ TC = 100C TJ TSTG
* Latest generation 4 IGBT's offer highest power density motor controls possible * HEXFREDTM diodes optimized for performance with IGBTs. Minimized recovery characteristics reduce noise, EMI and switching losses * For hints see design tip 97003 Parameter
Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Maximum Forward Current Short Circuit Withstand Time Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec.
D-PAK TO-252AA
Max.
600 9.0 5.0 18 18 4.0 16 10 20 38 15 -55 to +150 300 (0.063 in. (1.6mm) from case)
Units
V
A
s V W C
Thermal Resistance
Parameter
RJC RJC RJA Wt Junction-to-Case - IGBT Junction-to-Case - Diode Junction-to-Ambient (PCB mount)* Weight
Typ.
--- --- --- 0.3 (0.01)
Max.
3.3 7.0 50 ---
Units
C/W g (oz)
* When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994
www.irf.com
1
2/20/04
IRG4RC10KDPBF
Electrical Characteristics @ TJ = 25C (unless otherwise specified)
V(BR)CES
V(BR)CES/TJ
VCE(on)
VGE(th) VGE(th)/TJ gfe ICES VFM IGES
Parameter Min. Typ. Max. Units Conditions Collector-to-Emitter Breakdown Voltage 600 -- -- V VGE = 0V, IC = 250A Temperature Coeff. of Breakdown Voltage -- 0.58 -- V/C VGE = 0V, IC = 1.0mA Collector-to-Emitter Saturation Voltage -- 2.39 2.62 IC = 5.0A VGE = 15V See Fig. 2, 5 -- 3.25 -- V IC = 9.0A -- 2.63 -- IC = 5.0A, TJ = 150C Gate Threshold Voltage 3.0 -- 6.5 VCE = VGE, IC = 250A Temperature Coeff. of Threshold Voltage -- -11 -- mV/C VCE = VGE, IC = 250A Forward Transconductance 1.2 1.8 -- S VCE = 50V, IC = 5.0A Zero Gate Voltage Collector Current -- -- 250 A VGE = 0V, VCE = 600V -- -- 1000 VGE = 0V, VCE = 600V, TJ = 150C Diode Forward Voltage Drop -- 1.5 1.8 V IC = 4.0A See Fig. 13 -- 1.4 1.7 IC = 4.0A, TJ = 150C Gate-to-Emitter Leakage Current -- -- 100 nA VGE = 20V
Switching Characteristics @ TJ = 25C (unless otherwise specified)
Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets tsc td(on) tr td(off) tf Ets LE Cies Coes Cres trr Irr Qrr di(rec)M /dt Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Short Circuit Withstand Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak Reverse Recovery Current Diode Reverse Recovery Charge Diode Peak Rate of Fall of Recovery During tb Min. -- -- -- -- -- -- -- -- -- -- 10 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Typ. 19 2.9 9.8 49 28 97 140 0.25 0.14 0.39 -- 46 32 100 310 0.56 7.5 220 29 7.5 28 38 2.9 3.7 40 70 280 235 Max. Units Conditions 29 IC = 5.0A 4.3 nC VCC = 400V See Fig.8 15 VGE = 15V -- -- TJ = 25C ns 150 IC = 5.0A, VCC = 480V 210 VGE = 15V, RG = 100 -- Energy losses include "tail" -- mJ and diode reverse recovery 0.48 See Fig. 9,10,14 -- s VCC = 360V, TJ = 125C VGE = 15V, RG = 100 , VCPK < 500V -- TJ = 150C, See Fig. 10,11,14 -- IC = 5.0A, VCC = 480V ns -- VGE = 15V, RG = 100 -- Energy losses include "tail" -- mJ and diode reverse recovery -- nH Measured 5mm from package -- VGE = 0V -- pF VCC = 30V See Fig. 7 -- = 1.0MHz 42 ns TJ = 25C See Fig. 57 TJ = 125C 14 IF = 4.0A 5.2 A TJ = 25C See Fig. 6.7 TJ = 125C 15 VR = 200V 60 nC TJ = 25C See Fig. 105 TJ = 125C 16 di/dt = 200A/s -- A/s TJ = 25C See Fig. -- TJ = 125C 17
2
www.irf.com
IRG4RC10KDPBF
1.6
For both:
LOAD CURRENT (A)
1.2
Duty cycle: 50% TJ = 125C Tsink = 55 90C Gate drive as specified
Power Dissipation = 1.4 W Square wave:
0.8
60% of rated voltage
I
0.4
Ideal diodes
0.0 0.1
1
10
100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
100
TJ = 25 C
10
I C , Collector-to-Emitter Current (A)
I C, Collector Current (A)
TJ = 150 C
10
TJ = 150 C TJ = 25 C
1 5 10
1 1.0
V GE = 15V 20s PULSE WIDTH
2.0 3.0 4.0 5.0 6.0 7.0
V CC = 50V 5s PULSE WIDTH
15 20
VCE , Collector-to-Emitter Voltage (V)
VGE , Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
www.irf.com
3
IRG4RC10KDPBF
10
5.0
8
VCE , Collector-to-Emitter Voltage(V)
VGE = 15V 80 us PULSE WIDTH
Maximum DC Collector Current(A)
IC = 10 A
4.0
6
3.0
4
IC =
5A
2.0
IC = 2.5 A
2
0
25
50
75
100
125
150
1.0 -60 -40 -20
0
20
40
60
80 100 120 140 160
TC , Case Temperature ( C)
TJ , Junction Temperature ( C)
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature
10
Thermal Response (Z thJC )
D = 0.50 1 0.20 0.10 0.05 0.1 0.02 0.01 SINGLE PULSE (THERMAL RESPONSE) PDM t1 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.0001 0.001 0.01 0.1 1
0.01 0.00001
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4RC10KDPBF
400
VGE , Gate-to-Emitter Voltage (V)
VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc
20
VCC = 400V I C = 5.0A
C, Capacitance (pF)
300
16
Cies
200
12
8
100
Coes Cres
1 10 100
4
0
0
VCE , Collector-to-Emitter Voltage (V)
0
4
8
12
16
20
QG , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
0.40
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
10
Total Switching Losses (mJ)
Total Switching Losses (mJ)
V CC = 480V V GE = 15V TJ = 25 C 0.38 I C = 5.0A
50 RG = Ohm VGE = 15V VCC = 480V
0.36
IC = 10 A
1
0.34
IC =
5A
0.32
IC = 2.5 A
0.30
0
20
40
60
80
100
0.1 -60 -40 -20
0
20
40
60
80 100 120 140 160
RG , Gate Resistance
()
TJ , Junction Temperature ( C )
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Junction Temperature
www.irf.com
5
IRG4RC10KDPBF
2.0 1.5
1.0
I C , Collector-to-Emitter Current (A)
Total Switching Losses (mJ)
RG TJ VCC VGE
= Ohm 50 = 150 C = 480V = 15V
100
VGE = 20V T J = 125 o C
10
0.5
0.0
0
2
4
6
8
10
1
SAFE OPERATING AREA
1 10 100 1000
I C , Collector Current (A)
VCE, Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
100
Fig. 12 - Turn-Off SOA
10
TJ = 150C T = 125C
J J
T = 25C
1
0.1 0.0 1.0 2.0 3.0 4.0 5.0 6.0
Forward Voltage Drop - V FM (V)
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
6
www.irf.com
IRG4RC10KDPBF
50 14 VR = 200V TJ = 125C TJ = 25C 45
I F = 8.0A I F = 4.0A
12
10 40
I F = 8.0A I F = 4.0A
trr- (nC)
35
Irr- ( A)
8
6 30 4
25 VR = 200V TJ = 125C TJ = 25C 20 100
2
di f /dt - (A/s)
1000
0 100
di f /dt - (A/s)
1000
Fig. 14 - Typical Reverse Recovery vs. dif/dt
200 VR = 200V TJ = 125C TJ = 25C 160
Fig. 15 - Typical Recovery Current vs. dif/dt
1000 VR = 200V TJ = 125C TJ = 25C
I F = 8.0A
I F = 8.0A
di (rec) M/dt- (A /s)
120
I F = 4.0A
I F = 4.0A
Qrr- (nC)
80 40
0 100
di f /dt - (A/s)
1000
100 100
A
di f /dt - (A/s)
1000
Fig. 16 - Typical Stored Charge vs. dif/dt
Fig. 17 - Typical di(rec)M/dt vs. dif/dt,
www.irf.com
7
IRG4RC10KDPBF
Same type device as D.U.T.
80% of Vce
430F D.U.T.
Vge
V C
90%
10% 90%
td(off)
Fig. 18a - Test Circuit for Measurement of
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
10% IC 5%
t d(on)
tr
tf t=5s Eon Ets= (E +Eoff ) on Eoff
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
GATE VOLTAGE D.U.T. 10% +Vg +Vg
Ic
trr
Qrr =
trr id dt Ic dt tx
tx 10% Vcc Vce Vcc 10% Ic 90% Ic DUT VOLTAGE AND CURRENT Ipk
10% Irr Vcc
Vpk
Irr
Ic DIODE RECOVERY WAVEFORMS
td(on)
tr
5% Vce t2 Vce Ic Eon = Vce ie dtdt t1 t2 DIODE REVERSE RECOVERY ENERGY t3
t4 Erec = Vd idIc dt Vd dt t3
t1
t4
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
8
www.irf.com
IRG4RC10KDPBF
Vg GATE SIGNAL DEVICE UNDER TEST CURRENT D.U.T.
VOLTAGE IN D.U.T.
CURRENT IN D1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
L 1000V 50V 6000F 100V Vc* D.U.T.
RL= 0 - 480V
480V 4 X IC @25C
Figure 19. Clamped Inductive Load Test Circuit
Figure 20. Pulsed Collector Current Test Circuit
www.irf.com
9
IRG4RC10KDPBF
D-Pak (TO-252AA) Package Outline
Dimensions are shown in millimeters (inches)
6.73 (.265) 6.35 (.250) -A5.46 (.215) 5.21 (.205) 4 6.45 (.245) 5.68 (.224) 10.42 (.410) 9.40 (.370) 0.51 (.020) MIN. LEAD ASSIGNMENTS 1 - GATE 2 - DRAIN 3 - SOURCE 4 - DRAIN 3X 2X 1.14 (.045) 0.76 (.030) 0.89 (.035) 0.64 (.025) 0.25 (.010) M AMB 0.58 (.023) 0.46 (.018) NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 4.57 (.180) 2 CONTROLLING DIMENSION : INCH. 3 CONFORMS TO JEDEC OUTLINE TO-252AA. 4 DIMENSIONS SHOWN ARE BEFORE SOLDER DIP, SOLDER DIP MAX. +0.16 (.006). 1.27 (.050) 0.88 (.035) 2.38 (.094) 2.19 (.086) 1.14 (.045) 0.89 (.035) 0.58 (.023) 0.46 (.018)
6.22 (.245) 5.97 (.235) 1.02 (.040) 1.64 (.025) 1 2 3 -B1.52 (.060) 1.15 (.045)
2.28 (.090)
D-Pak (TO-252AA) Part Marking Information (Lead-Free)
EXAMPLE: THIS IS AN IRFR120 WITH AS S EMBLY LOT CODE 1234 AS S EMBLED ON WW 16, 1999 IN T HE AS SEMBLY LINE "A"
Note: "P" in assembly line pos ition indicates "Lead-Free"
INT ERNAT IONAL RECTIFIER LOGO AS S EMBLY LOT CODE
PART NUMBER
IRFR120 12 916A 34
DAT E CODE YEAR 9 = 1999 WEEK 16 LINE A
OR
INTERNATIONAL RECTIFIER LOGO AS S EMBLY LOT CODE PART NUMBER
IRFR120 P916A 12 34
DATE CODE P = DES IGNATES LEAD-FREE PRODUCT (OPTIONAL) YEAR 9 = 1999 WEEK 16 A = AS S EMBLY S IT E CODE
10
www.irf.com
IRG4RC10KDPBF
Notes:
Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) VCC=80%(VCES), VGE=20V, L=10H, RG= 100 (figure 19) Pulse width 80s; duty factor 0.1%. Pulse width 5.0s, single shot.
D-Pak (TO-252AA) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TR TRR TRL
16.3 ( .641 ) 15.7 ( .619 )
16.3 ( .641 ) 15.7 ( .619 )
12.1 ( .476 ) 11.9 ( .469 )
FEED DIRECTION
8.1 ( .318 ) 7.9 ( .312 )
FEED DIRECTION
NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
13 INCH
16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481.
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.02/04
www.irf.com
11
Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/


▲Up To Search▲   

 
Price & Availability of IRG4RC10KDPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X